CERTIFICATIONS & APPROVALS

T.T.

INSTALLATION DRAWING

Tercel International 98, Glengariff Dve, Floreat WA - 6014 Tel.: (08) 9387 6188 Fax : (08) 9387 6588 E-mail : peter@tercel.com.au , info@tercelzeus.com www.tercel.com.au, www.tercelzeus.com

Turnkey lightning protection systems

ESE Air Terminal Conforms to NFC17-102 Standards

DISTRIBUTOR

DISTR

Tercel is a recognised leader in Turnkey Lightning Protection systems worldwide. Our area lightning protection systems are designed to provide an efficient and cost effective protection for mission critical applications

Tercel's controlled streamer ESE lightning conductors are fully autonomous and are in compliance with NFC17-102 standards.

During a storm condition the electrical field intensity in the atmosphere increases rapidly and this sudden change is detected by the sensors fitted to the lower part of the air terminal. This sensors continuously monitor the electrical field as well as store energy from ambient electrical field for the functioning of internal electronics. The information received through the sensors by the electronic triggering circuit inside the housing of the air terminal triggers an ionisation at the upper series of electrodes automatically. This activation of corona is made at the precise time when a downward leader is approaching the ground. This leads to the formation of an upward leader and ensures that the lightning energy is channelled safely down to the low impedance grounding through the purpose designed air terminal through its down conductor network only.

The concept of an ESE is to trigger an upward streamer earlier than a conventional rod. By controlling the emission of this streamer, Protection area of Tercel Zeus ESE Arrestor is much wider than a conventional rod. The electronic circuit in the Tercel Zeus system is able to detect when the lightning is approaching the ground and at this precise moment it triggers a spark at the tip of the terminal thus involving the emission of an upward streamer which will intercept the lightning. An upward streamer can develop only if its intensity is sufficient. When a lightning is going to occur the intensity of this field becomes about 100 times higher than usual and reaches values around 10kV/m This source of energy is reliable and independent from the rain, the sun or the wind. Tercel Zeus ESE Lightning Conductor Air Terminal uses the ambient electric field as the source energy.

Transformer & Triggering Release command & HV Amplifier Chargre accumilator Ambient Electrical Feild sensor

7 ercel

Central Pick-up rod

Upper Electrode

Stainless steel enclousure Aerospace Grade Material)

Internal triggering circuitry & Electronics Isolated Mould (waterproof)

Tz-63

ercel

Tz-50

erce

During a lightning activity electrical charges inside the thunderstorm cloud and the concentration of negative charge at the bottom of the cloud creates a giant electric field between the cloud and the ground. The electric field value created depending on the thunderstorm clouds charge concentration values ranging from 5kV/m to 30 kV/m. Due to this giant electric field an opposite charge to this cloud concentration will be developed in the earth surface by corona effect. This corona developed from any prominent object will get attracted towards the downward leader from the cloud concentration. In such conditions air becomes conductive resulting electrical discharges from such clouds. The electric field is constant on a flat surface but will be more intense near sharp points, edges and elevated structures such as trees, buildings, towers etc.

The effectiveness of an E.S.E. lightning conductor is assessed by comparing the upward leader initiation time emitted by the E.S.E. lightning conductor against the upward leader initiation time emitted by a single rod under the same electrical and geometrical conditions during laboratory tests. The advanced triggering time(Δt) is the average time difference of initiation of the upward streamer between the ESE air terminal and the single rod.

These test are designed to assess the reliabity of an ESE air terminal submitted to repetitive high current shocks. During such tests, the Tercel Zeus ESE air terminals was submitted to several thousand of Amperes and both Negative and Positive current polarities were injected.

Condition and performance of the air terminal is tested BEFORE and AFTER testing and have clearly shown that Tercel Zeus air terminal is NOT AFFECTED by repetitive current shocks of high magnitudes.

Model Number	Tz 20	Tz 40	Tz 50	Tz 63		
Current capacity	≥200KA (10/350µs)					
Capacity against wind speed	≥40m/s					
Dimension	40cm	39cm	37cm	39cm		
Gain in triggering time (ΔT)	20µs	40µs	50µs	60µs		
Protection Radius	Calculate using the formula given or select using table 1 to table 4					
WEIGHT	2.5kg	2.6kg	2.9kg	3.1kg		
ΔL	20m	40m	50m	60m		
Material	Stainless Steel					
Standard	NFC17-102(2011)					

Protection Calculation

The protection area Rp of **Tercel Zeus** lightning conductor is calculated according to French standard NF C17-102

 $Bp = \sqrt{h(2D-h) + \Delta L(2D+\Delta L)}$

Gain in triggering time ΔT of the Chosen **Tercel Zeus**, Which allows the ΔL value to be determined according to the formula ΔL (m) = V(m/ s). ∆T(_s);

D = 20, 30, 45 or 60, depending on the protection level required (I, II, III or IV) on a given site, according to the lightning risk assessment guide (NFC 17-102 appendix B);

h= height of the lightning air terminal above the surface to be protected: (where h <5m, see table below).

PROTECTION RADIUS CALCULATION OF DFFERENT ESE AIR TERMINAL MODEL AS PER NFC 17-102 STANDARDS

Protection Level I, D=20m								
HEIGHT	2	3	4	5	10			
MODELS	PROTECTION RADIUS							
Tz 20	15	22	29	37	39			
Tz 40	23	35	46	58	59			
Tz 50	27	41	55	68	69			
Tz 63	31	47	63	79	79			
Protection Level II, D=30m								
HEIGHT	2	3	4	5	10			
MODELS PROTECTION RADIUS								
Tz 20	18	27	36	44	46			
Tz 40	26	39	52	65	67			
Tz 50	30	45	60	76	77			
Tz 63	34	52	68	86	88			
Protection Level III, D=45m								
HEIGHT	2	3	4	5	10			
MODELS PROTECTION RADIUS								
Tz 20	21	30	41	51	53			
Tz 40	30	45	60	75	77			
Tz 50	34	52	69	86	88			
Tz 63	39	58	78	97	99			
Protection Level IV, D=60m								
HEIGHT	2	3	4	5	10			
MODELS PROTECTION RADIUS								
Tz 20	23	35	46	58	61			
Tz 40	33	50	67	84	87			
Tz 50	38	57	76	95	98			
Tz 63	43	64	85	107	109			

